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Abstract

Highly resolved multi-dimensional NOE data are essential for rapid and accurate determination of spatial
protein structures such as in structural genomics projects. Four-dimensional spectra contain almost no
spectral overlap inherently present in lower dimensionality spectra and are highly amenable to application
of automated routines for spectral resonance location and assignment. However, a high resolution 4D data
set using conventional uniform sampling usually requires unacceptably long measurement time. Recently
we have reported that the use of non-uniform sampling and multi-dimensional decomposition (MDD) can
remedy this problem. Here we validate accuracy and robustness of the method, and demonstrate its
usefulness for fully protonated protein samples. The method was applied to 11 kDa protein PA1123 from
structural genomics pipeline. A systematic evaluation of spectral reconstructions obtained using 15–100%
subsets of the complete reference 4D 1H–13C–13C–1H NOESY spectrum has been performed. With the
experimental time saving of up to six times, the resolution and the sensitivity per unit time is shown to be
similar to that of the fully recorded spectrum. For the 30% data subset we demonstrate that the intensities
in the reconstructed and reference 4D spectra correspond with a correlation coefficient of 0.997 in the full
range of spectral amplitudes. Intensities of the strong, middle and weak cross-peaks correlate with coef-
ficients 0.9997, 0.9965, and 0.83. The method does not produce false peaks. 2% of weak peaks lost in the
30% reconstruction is in line with theoretically expected noise increase for the shorter measurement time.
Together with good accuracy in the relative line-widths these translate to reliable distance constrains
derived from sparsely sampled, high resolution 4D NOESY data.

Abbreviations: 3DD and 4DD – MDD for three and four dimensions; 4D – four-dimensional; LP – linear
prediction; MDD – multi-dimensional decomposition; Nc – number of spectral components; S/N – signal-
to-noise

Introduction

Substantial advances in biomolecular NMR have
been achieved over the past several decades due to

contributions from many research groups. As in
many other spectroscopic methods, these efforts
have mostly focused on improving spectral sensi-
tivity and resolution. A number of important
advances have been achieved including isotope
labelling techniques and improved methodologies
for pulse sequence design (Bax, 1994; Yamazaki
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et al., 1994; Goto and Kay, 2000; Fernandez and
Wider, 2003; Tugarinov et al., 2004a). These
methods, together with the development of new
hardware, now allow the routine acquisition of
sensitive spectra of large biomolecules at
sub-millimolar concentrations. The problem of
signal overlap in crowded spectra can be alleviated
by using modern spectrometers with higher mag-
netic fields, isotope spectra editing, and decreasing
natural line widths (Pervushin et al., 1997;
Tugarinov et al., 2004b). Nonetheless, the most
efficient way for improving resolution in NMR is to
increase the spectra dimensionality (Ernst, 1992;
Bax, 1994; Wuthrich, 2003). However, exponential
increase in measurement time due to the increased
dimensionality of spectra hinders the practical use
of 3D and 4D spectra and prohibits spectroscopy in
higher dimensions. Significant reduction in acqui-
sition time of a multi-dimensional NMR experi-
ment is a prerequisite for its routine usage. Another
requirement is to achieve a better sensitivity-reso-
lution-time balance for 3D (4D) spectroscopy,
similar to that achieved by contemporary 2D (3D)
spectroscopy. The ability to achieve high resolution
while avoiding the time barrier in higher dimen-
sionality NMR experiments would significantly
facilitate protein spectral assignment and structure
determination. This, in particular, would further
advance the generally acknowledged role of NMR
in structural genomics (Christendat et al., 2000;
Kennedy et al., 2002; Szyperski et al., 2002; Yee
et al., 2003; Peti et al., 2004).

The prohibitively long acquisition time of a
high-dimensional NMR experiment is due to a
large number of uniformly sampled points in sev-
eral indirect dimensions. A 4D of the same exper-
iment type as a 3D contains the same number of
spectral peaks but takes much more measurement
time. Thus, if adequate sensitivity of an experiment
is achieved for the 3D version, there would be a
large redundancy in the 4D, in proportion to the
number of points in the extra dimension. The sit-
uation is known as so-called ‘‘sampling limited’’
regime. For a given experiment type reduction of
the measurement time can be achieved by reducing
number of sampled points either by truncating
acquisitions in the indirect dimensions or by
omitting some points inside a full FID. In both
cases experimental sensitivity roughly scales as a
square root of the number of retained points.
However, in the first case spectral resolution is

largely sacrificed. In the second case, which is
referred to as non-uniform or sparse sampling
(Hoch and Stern, 1996; Rovnyak et al., 2004), the
resolution can be retained. To summarize, by
omitting enough points one can scale down the
experimental time of a 4D to equal the one of a 3D,
while keeping the resolution and most of the sen-
sitivity of the 3D. This generally solves the time
problem. Further improvement can be achieved if
the sampling points are selected in an optimal way,
e.g. by using ideas of matched acquisition (Barna
et al., 1987; Schmieder et al., 1994).

Spectra recorded in the non-uniform mode
cannot be directly processed by the regular Discrete
Fourier Transform (DFT). However, there are at
least two methods: Maximum Entropy recon-
struction (ME) (Laue et al., 1986; Hoch and Stern,
2001) and multi-dimensional decomposition
(MDD), which have been proven successful in
dealing with non-uniformly sampled data. ME was
recently applied to a suite of non-uniformly sam-
pled 3D triple resonance experiments for protein
backbone assignment (Rovnyak et al., 2004).MDD
has been demonstrated for a representative region
of a 3D 15N NOESY-HSQC of 14 kDa protein
(Orekhov et al., 2003) and applied for analysis of
4D 13C Methyl-NOESY spectrum of deuterated
82 kDa protein MSG (Tugarinov et al., 2005). In
these cases a measurement time saving of 70–80%
was achieved without sacrificing spectral resolution
and sensitivity. In other words, most of available
resolution was obtained, while the sensitivity
corresponded to the actual measurement time.

Unlike maximum entropy reconstruction
method, which has been developed over the past
20 years, MDD is yet to be developed to such a
level. The justification for further development of
the MDD method comes from its ability of
correctly reproducing crowded spectra with high-
dynamic range of intensities. These are encoun-
tered for example in the NOESY type experiments,
which are the major source of information for
NMR structure calculations. It is worth mention-
ing that for the experiments of the NOESY-HSQC
type, the most natural and preferable dimension-
ality is four, where both interacting protons can be
identified based on the generally good signal
dispersion in a 2D HSQC spectrum. Two
and three-dimensional NOESY schemes often
result in ambiguous peak assignments even for
non-overlapped signals.
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So far the following questions were not
addressed: if the method is applicable to fully pro-
tonated protein samples exhibiting large number of
signals in 4D 13C NOESY spectrum; how accurate
are the spectral intensities in the different spectral
regions; are there false peaks in the spectral
reconstruction; how does the sensitivity scale with
the amount of missing data; is the method robust
with respect to variations of the input data and
parameters? Here we attempt to address these
questions and further develop the MDD method-
ology to the level of ready-to-use processing pro-
tocols. The method is demonstrated for a uniformly
labelled 106-residue protein taken as a typical rep-
resentative from a structural proteomics pipeline.
(Christendat et al., 2000; Gerstein et al., 2003).

Theory

MDD is amathematical concept for approximation
of three- or higher dimensional matrix by a product
of one-dimensional vectors (Kruskal, 1977).

For the three-dimensional case the MDD can
be formulated as follows. Given a matrix S with
elements sk,m,n (k=1. . .K, m=1. . . M, n=1. . . N),
find numbers ab and normalized vectors F1b, F2b,
F3b with elements f1k

b, f2m
b and f3n

b, respectively,
such that the following norm becomes minimal.

jG � ½S�RbðabF1b�F2b�F3bÞ�j2þ kRbðabÞ2

ð1Þ

Here, the symbol � denotes tensor product oper-
ation; the matrix S corresponds, for example, to an
experimental three-dimensional NMR spectrum in
time or frequency domain. In the case of sparse
sampling only a fraction of elements in S is mea-
sured and the matrix G, which contains elements
gk,m,n2{0,1}, indicates the absence or presence of a
particular data point. Accordingly, the symbol
• describes element-wise multiplication of matri-
ces. The last term represents a Tikhonov regular-
ization, which is parameterized with the factor k
(Tikhonov and Samarakij, 1990) and may be used
for improving the convergence of the MDD algo-
rithm (Ibraghimov, 2002).

MDD has been introduced as a tool for data
analysis in the early seventies under various names
such as parallel factor analysis, canonical decom-
position or three-way decomposition. Theoretical
considerations concerned notably questions of

uniqueness of optimal approximations, general-
ization for higher dimensions, and development of
efficient algorithms for solving the least square
minimization problem defined by Equation 1.
Notably, an efficient algorithm for dealing with
large fraction of missing data for matrices of any
dimensionality higher or equal to three has been
recently introduced (Ibraghimov, 2002). This
algorithm is implemented in the mddNMR soft-
ware, which is used in this work. Since the ad-
vanced mathematical details are outside of the
scope of this work, we present only a brief outline
here.

The sum in Equation 1 represents the funda-
mental model assumption of MDD: direct prod-
ucts of one-dimensional vectors are sufficient to
describe all features of a high-dimensional matrix.
In the following we refer to S as the (input) spec-
trum and to the entities in the sum over b as
(output) amplitudes ab and shapes F1b, F2b and
F3b, while the summation terms are called com-
ponents. Note that while the input sparse data
matrix S may lack many entries, the shapes F1b,
F2b and F3b representing the output of the MDD
are complete, allowing reconstruction of a full
matrix. The only non-restraining condition for the
completeness of the output shapes is that every
plane in S contains at least one data point. The
amplitudes ab result from the use of normalized
shapes F1b, F2b and F3b. The summation index b
runs over the number of components used for the
decomposition. The range for this index depends
on the type of spectrum. Notably the number of
components may be significantly less than the
number of peaks in a multi-dimensional experi-
ment. This is true, for example, for the 3D 1H–15N
NOESY-HSQC spectrum (Orekhov et al., 2003),
where one component comprises all peaks,
including diagonal, sharing 1H and 15N frequen-
cies of one amide group. Thus, the number of
components for this spectrum is defined by the
number of peaks in a corresponding HSQC
spectrum.

Relation between NMR signals and MDD

MDD and multi-dimensional NMR spectroscopy
are intimately related, as can be shown by deduc-
ing the model assumption for the MDD (Equation
1) from the description of NMR experiments. This
connection can be shown on a general theoretical
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level; however, in the following we demonstrate
this on an example of the 4D experiment used for
this work, 4D HCCH-NOESY. During the evo-
lution delays t1 and t2 initial proton magnetization
of an aliphatic group CHn (n=1,2,3) is labeled by
the proton and carbon chemical shifts; subse-
quently the magnetization is transferred via 1H–1H
NOE cross-relaxation to another CHn group,
where it is labeled by the second carbon chemical
shift (evolution time t3) and finally detected as a
transverse proton magnetization during the
acquisition time t4. Considering flow of magneti-
zation in this experiment, the first and second CHn

groups are denoted as the origin and destination,
respectively. If all the origin (destination) CHn

groups are enumerated by indices a (b), the 4D
model spectrum S ¢ (to be distinguished from the
experimental spectrum S) in the time and fre-
quency domain is given by

S0ðt1;t2;t3;t4Þ¼RabAabL
aðt1ÞLaðt2ÞLbðt3ÞLbðt4Þ

ð2aÞ

S0ðx1;x2;x3;x4Þ ¼RabAabL
aðx1ÞLaðx2Þ

� Lbðx3ÞLbðx4Þ ð2bÞ

where summations run over all pairs a, b of
interacting aliphatic groups; Aab represent ampli-
tudes of the peaks, and L(t) and L(x) denote their
normalized line-shapes in the time and frequency
representations. While the amplitudes Aab are de-
fined by the amount of initial magnetization and
efficiencies of the magnetization transfer during
fixed delays for J-coupling evolutions and NOE
cross-relaxation, etc., the shapes L are determined
by the resonance frequencies and magnetization
decays exhibited during the evolution delays t1)t4.
Notably, Equations 2a and 2b make no specific
assumptions about the functional form of the line
shapes and, consequently, look formally the same
in the time and frequency domains.

Equations 2 show a direct link between the
four-dimensional experiment and the MDD in
four-dimensions (4DD), where each component or
peak is described by its line shapes in all four
dimensions. However, exactly because every peak
has to be described by an individual component,
the 4DD is not suitable for extracting cross-peaks
from the 4D NOESY spectra, which contains the
diagonal and large number of cross-peaks of

significantly different intensities. From our expe-
rience only intense signals (e.g. NOESY diagonals)
can be reliably identified if the 4DD is used. It is
much more attractive to use the 3DD, in which
case diagonal signal and all cross-peaks sharing
the line shapes of the destination CHn group b are
collected into a single component. Indeed, Equa-
tions 2 can be rewritten as:

S0ðt1; t2; t3; t4Þ ¼ RbabL
bðt1; t2ÞLbðt3ÞLbðt4Þ

ð3aÞ

S0ðx1;x2;x3;x4Þ ¼RbabL
bðx1;x2Þ

� Lbðx3ÞLbðx4Þ ð3bÞ

where normalized two-dimensional shapes Lb

ðt1; t2Þ and Lbðx1;x2Þ and new amplitudes ab are
introduced so that abL

bðt1; t2Þ ¼RaAabL
aðt1ÞLaðt2Þ

and abL
bðx1;x2Þ ¼ RaAabL

aðx1ÞLaðx2Þ:
So far the line shapes L were defined as func-

tions of continuous time or frequency arguments.
In practice, the evolution times are defined on a
grid with regular intervals Dt:

t1 ¼ ðp� 1ÞDt1; t2 ¼ ðq� 1ÞDt2;
t3 ¼ ðm� 1ÞDt3; t4 ¼ ðn� 1ÞDt4

ð4Þ

where indices p, q, m, n run from 1 to the maximal
values P, Q, M, N defined by the maximum
acquisition times in dimensions 1–4, respectively.
Analogous grid can be envisaged in the frequency
domain, although dimension sizes P, Q, M, N
could have different values. In addition, for the
following we introduce an index k that runs over
K=P*Q values, with k an element of (p, q).
Namely, k=1 for p=1, q=1; k=2 for p=1,
q=2; … k=P*Q for p=P, q=Q. Using indices
k,m,n, Equation 3a can be written as:

S0k;m;n ¼ Rbab f 1b
k � f 2

b
m � f 3b

n ð5aÞ

where the following substitutions were made
f 1b

k ¼ Lbð½p� 1�Dt1; ½q� 1�Dt2Þ; f 2b
m¼Lbð½m� 1�

Dt3Þ; f 3b
n ¼ Lbð½n� 1�Dt4Þ. Finally, by introduc-

ing vectors F1b, F2b, F3b with elements
f 1b

k; f 2
b
m; f 3

b
n , respectively, the model spectrum of

Equations 2, 3, 5a is presented in the form equiv-
alent to the MDD model used in the least square
minimization defined by Equation 1:

S0 ¼ RbðabF1b � F2b � F3bÞ ð5bÞ
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Considering the time grid defined in Equation 4 the
input spectrum S can be presented as a four
dimensional matrix with elements sp,q,m,n or, alter-
natively, as a three-dimensional array with elements
sk,m,n. The later representation, being used together
with Equation 5b, allows processing of a 4D spec-
trum by the three-dimensional version of MDD
(3DD). The relation between the 4D spectrum and
output shapes, described above, gives a clue for
interpretation of the MDD output. In particular,
the vector F1b corresponds to a two-dimensional
1H–13C correlation spectrum in the time domain,
where signal intensities are proportional to effi-
ciencies of the NOE transfer from the protons of all
the aliphatic groups a to the destination group b.
Relation between the elements of one-dimensional
vector F1b and the two-dimensional matrix is given
by Equations 3–5. Vectors F2b and F3b correspond
respectively to the 1D carbon and proton time do-
main profiles (t3 and t4). Notably, only one pair of
shapes for these two dimensions is adjusted for all
signals described by a particular vector F1b. This
explains why week NOE signals are reliably de-
scribed by the 3DD, but may be missing if the 4DD
is used in which case all shapes have to be adjusted
for every individual peak.

The Equations 1 and 5 have the same form both
in frequency and time domains or mixture of those
for different dimensions. In practice it is convenient
to perform Fourier transform in the non-sparsed
dimensions. This speedups the calculations and
allows removal of regions with artefacts, e.g. at the
edges of the spectrum or near the water signal.
Note that the data along the directly acquired
dimension, i.e. t4 for the 4D spectrum, is always
complete and thus can be processed by regular
Fourier transform prior to the MDD calculations.

Materials and methods

Reference 4D spectrum

A sample with uniformly 15N/13C labelled 106-
residue protein PA1123 was generated by the
Northeast Structural Genomics Consortium. A
complete 4D HCCH-correlation NOESY spec-
trum (Vuister et al., 1993) was recorded at 25 �C
on a Varian INOVA 600-MHz spectrometer. An
acquisition time of 64 ms was used in the direct 1H

dimension, along with a 150 ms NOE mixing time
and a relaxation delay of 1 s between the tran-
sients. The recorded spectrum contains 448, 50, 18
and 18 complex points along t4 (1H), t1 (1Hind),
t2 (

13C) and t3 (
13C) dimensions, respectively. The

corresponding spectral widths are 11.6, 5.2, 19.9
and 19.9 ppm. With the four step phase cycle the
total measurement time was 7.5 days.

The spectrum was processed using the nmrPipe
software package (Delaglio et al., 1995). Signals in
the time domain in 1H and 1Hind dimensions were
multiplied by a square sine and a sine weighting
function, respectively, then zero filled to 512 and
64 points prior to Fourier transformation. In the
t2 (

13C) dimension signals were multiplied by a sine
weighting function, zero filled and Fourier trans-
formed. Subsequently, the time domain signals in
t3 (13C) dimension were extended by 25% to
22 points by linear prediction (LP) using four
coefficients, multiplied by a square sine function,
zero filled to 32 points and Fourier transformed to
frequency domain. After that, Hilbert transform
was applied to the signals in t2 (13C) dimension,
and the frequency domain data in this dimension
were converted back into original time domain
using the exact inverse of previous processing
procedures. The final spectrum was obtained by
processing the time domain signals in t2 (13C)
dimension as following: linear predicted 4 points
with eight coefficients, multiplied by a sine func-
tion, zero filled to the same size as in t3 (13C)
dimension and Fourier transformed.

The processed spectrum in frequency domain
will be referred to as ‘‘reference’’ spectrum. The
standard deviation of the noise in this spectrum,
which was defined by averaging the noise in ten
arbitrarily chosen planes, is denoted as rref. The
value (equals to 2.42 � 104 arbitrary units of
intensity) will be used as a unit of spectral intensity
throughout the paper.

MDD reconstruction of the 4D spectrum

Processing of a spectrum recorded in the sparse
mode with the MDD consists of five major steps,
which are depicted in Figure 1 and described in the
following paragraphs in more details: (i) Fourier
transform in the acquisition dimension (t4) and
splitting of the spectrum into several regions; (ii)
estimation of number of components (Nc)
for every region; (iii) MDD calculations, i.e.
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minimization of the Equation 1; (iv) processing of
individual F1b (F2b) shapes as regular 2D (1D)
time series; (v) reconstruction of the spectrum for
every region using the resulting set of shapes in the
frequency domain and combining all regions into
final 4D spectrum. In addition specifically in this
work, sparse data is extracted from a complete
spectrum prior to step (ii) and the resulting
reconstructed 4D spectrum is compared with the
reference for the evaluation of the quality of the
reconstruction. Note that normally the sparse FID
is obtained directly from experiment. Steps (i) and
(iv) are performed using a standard processing tool
nmrPipe (Delaglio et al., 1995). For the remaining
steps different routines from the home-built soft-
ware mddNMR are used. The mddNMR package
is to be released soon.

Region selection in x4

First the acquisition t4-dimension of the spectrum
is processed in the same way as for the reference
spectrum (see above). Then the 10 overlapping

aliphatic regions in the range )0.5 to 4.5 ppm in the
x4 dimension were extracted. Each of the eight
central regions covered 0.7 ppm, and two flanking
regions covered 0.6 ppm. (See first column in Ta-
ble 1 for spectral range of each region.) All regions
had a 0.2 ppm overlap with their immediate
neighbours in order to eliminate boundary effects
in the reconstructed spectrum. For methodological
purposes, variations of several parameters were
performed on one of the regions, which in the fol-
lowing is referred to as a representative. This region
covers range of chemical shifts from 0.4 to 1.1 ppm
in the acquisition dimension x4. The division of the
spectrum into a set of regions is beneficial only for
reduction of MDD computation time.

Determination of number of components and
Tikhonov regularization factor k

The number of components (Nc) is an important
parameter for MDD. It should be sufficiently high
for describing all signals in the spectrum. On the
other hand Nc values should be kept low for

Figure 1. Schematic of the procedure by which the frequency domain spectrum of a sparsely sampled multi-dimensional data set is
reconstructed. See text for details.
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reducing the number of adjustable parameters and
avoiding over-parameterization in the minimiza-
tion of Equation 1. As it follows from the theory
presented above, the 4D 1H–13C HSQC-NOESY-
HSQC spectrum can be adequately described by
the 3DD with approximately so many components
as the number of peaks in the corresponding 2D
1H–13C HSQC spectrum. Thus, the most
straightforward and simple method of estimating
the Nc is counting the number of peaks in the
corresponding region of the HSQC spectrum. This
method has been used in our previous publications
(Orekhov et al., 2003; Tugarinov et al., 2005). As
an equal alternative, in this study Nc is estimated
from the same input 4D sparse data. Nc is assumed
to correspond to the number of strong diagonal
signals observed in the reconstruction of the 4D
spectrum, which is obtained using a short run of
the 4DD. The 4DD is fast converging as for given
input data and number of components, it uses
much fewer adjustable parameters than 3DD, i.e.
Nc � (P+Q+M+N ) 3) for 4DD versus Nc �
(P � Q+M+N ) 2) for 3DD. Consequently,
4DD is more robust in describing bright spectral
features. The protein used in this study has
approximately 300 proton–carbon pairs with un-
ique H, C chemical shifts. Thus, for each of the 10
regions, the average number of components Nc is
30. In the 4DD two times higher Nc values were

used for each region to ensure sufficient number of
components for reconstruction of all diagonal
peaks. For these calculations the value of k was set
to 0.001, and each run had 200 iterations. The
number of diagonal peaks was determined by
peak-picking script pkFindROI from the nmrPipe
package (Delaglio et al., 1995) using the threshold
of three noise levels with other parameters set at
their default values. Finally, for every region the
number of observed strong diagonal peaks was
increased by 30% to describe small intensity fea-
tures and used as the Nc (see second column of
Table 1) for the further 3DD calculations.

Apart from the number of components the
Tikhonov regularization factor, denoted as k in
Equation 1, is the only parameter of the MDD
calculations. Whereas for complete data, the value
of k mainly determines how fast convergence of the
algorithm is achieved, for sparse data usage of
regularization also improves quality of the solu-
tion. In our previous studies on sparse 3D and 4D
NOESY spectra (Orekhov et al., 2003; Tugarinov
et al., 2005) the optimum of the k-values was
determined as the broad range: 10)1–10)3. In this
work, if not specified otherwise, k=0.01 was used
for all runs. In addition, to check how optimal this
value is, we optimized the k-value for the repre-
sentative region with the sparse level of 0.3, i.e.
30% of the data. For this purpose, quality of
spectral reconstruction was evaluated for a series of
3DD runs with systematic variation of the k value.

MDD calculations and computational costs
For a given input spectrum and defined values of
Nc and k, the MDD calculations (3DD or 4DD)
that is minimization of Equation 1 is a batch job
performed by the mddNMR software. On output
a file is produced, which contains amplitudes and
1D vectors of shapes for all components. The
amount of computation depends on specified
number of iterations in the minimization. Con-
vergence is usually achieved within the first
50–100 iterations out of total 1000 used in this
study. The 3DD calculations with 1000, 2000
and 5000 iterations gave practically identical
reconstructed 4D spectra of the representative
region. A typical calculation with 1000 iterations
at a Linux cluster takes 2 h using 16 Intel Xeon
2.2 GHz processors.

Table 1. The results of the MDD reconstruction in the 10

regions of 4D HCCH-correlation NOESY spectrum of the

protein PA1123

x4 region
a (ppm) Number of components

Nc used for 3DD

rdif
b

)0.5–0.1 4 1.08

)0.1–0.6 16 1.15

0.4–1.1 50 1.19

0.9–1.6 36 1.18

1.4–2.1 50 1.21

1.9–2.6 42 1.18

2.4–3.1 26 1.15

2.9–3.6 19 1.18

3.4–4.1 43 1.28

3.9–4.5 29 1.63

aThe ranges of the extracted regions in ppm along 1H-direct
dimension.
bThe value of rdif is normalized as defined in Materials and
methods section.
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Processing of the 1D shapes and reconstruction
of 4D spectrum
The one-dimensional shapes produced by the
MDD for individual components are either ready
frequency line shapes (i.e. for x4) or regular com-
plex FID time series (Figure 1). Using nmrPipe
processing scripts the later are converted into 1D
frequency line shapes. In the special case of 3DD
applied to the 4D spectrum, the first shape (F1)
corresponds to a 2D hyper-complex FID and,
consequently, is processed as a 2D spectrum.
Subsequently, for each component a 4D matrix is
produced by the tensor product of all three (or
four for 4DD) frequency shapes. Sum of all
matrices for individual components gives the final
4D reconstruction of the spectrum for the region.
It is possible to reconstruct first the complete 4D
spectrum in the time domain and then process it as
usual. However, while the final result is almost
identical, the processing of shapes gives significant
practical advantage since 1D Fourier processing is
much faster, it does not require Hilbert transform
and inverse processing in one of the carbon
dimensions. It is also worth noting that the former
approach allows almost immediate zooming into
any region of the frequency domain spectrum
without having to process the whole spectrum
beforehand.

The processing parameters for the shapes, i.e.
weighting functions, zero-filling, phasing and lin-
ear prediction, were identical to those used for the
processing of the corresponding dimensions of
the complete reference spectrum. A short linear
prediction was used for avoiding well-known
artifacts that might occur with a more extensive
use of the LP, i.e. t1 noise ridges and uncontrol-
lable distortions of line shapes. These artifacts,
which would have nothing to do with the MDD
processing, might interfere with quantitative
comparison of the reference and the reconstructed
spectra. Note that both LP and zero filling were
applied to the output of the MDD calculations, i.e.
to the shapes, and do not effect MDD calculations
per se.

Comparison with the reference spectrum
All sparse data sets in this work were produced as
subsets of the complete reference 4D spectrum
described above. In each case a specified amount
of complete 1D FIDs (t4) were extracted from this
spectrum. The sparse level, which varies from 0

(no data) to 1 (full data), is defined as a fraction of
the selected to the total number of FIDs. The FIDs
were selected in accordance with a random distri-
bution, which was exponentially biased to match
the transverse relaxation times of 50, 10 and 10 ms
in dimensions t1, t2 and t3, respectively (Tugarinov
et al., 2005).

Both reconstructed and reference spectra are
organized in the frequency domain as sets of 2D
spectral planes (64 � 128 data points) along the
proton (x1) and carbon (x2) dimensions of the
origin aliphatic group. In total, a typical region of
the 4D spectrum contains 64 � 63=4032 of these
planes, which corresponds to the number of points
in the two remaining dimensions x3 and x4.
Quality of the reconstruction was assessed using
two quantitative measures: the normalized (i.e.
divided by rref) standard deviation of intensities in
the difference spectrum rdif and the noise level in
the reconstructed spectrum rrec. Note that
while the noise level is uniform throughout most
of the reference spectrum, it differs among the 2D
planes of the reconstruction. Namely, significant
denoising occurs in the planes without strong sig-
nals that are described as MDD components. To
obtain a more meaningful noise estimate for
planes with signals, rrec values were averaged only
at the planes containing the diagonal signals using
subroutine estNoise from nmrPipe software. When
applied to the same planes of the reference spec-
trum this procedure gave the noise estimate very
close to rref.

Cross-peaks in the representative region of ref-
erence and reconstructed spectra were identified
and characterized using script pkFindROI from the
nmrPipe package (Delaglio et al., 1995). Peaks are
picked using Reject Noise Peaks mode at the Chi2
level of 0.01, with the intensity threshold of 2rref

and the noise level rref. The cross-peaks found in
the planes without diagonal signals were excluded
from the resulting peak list. False entries in the
peak list obtained from the reconstructed spectrum
were identified using two thresholds, i.e. as those
with peak intensities higher than 1.3*(Iref+3) and
1.3*(Iref+5), where Iref is intensity at the corre-
sponding position in the reference spectrum.
Missing peaks are defined as peaks present in the
reference spectrum but missing in the reconstruc-
tion. Quantitatively, a peak with amplitude Aref

from the reference peak list was defined as missing
if the intensity at the corresponding position in
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the reconstructed spectrum was lower than
0.7*(Aref ) 3). To check how many peaks are
expected to be lost at different sparse levels
because of the increased noise, the intensities of
the peak list entries were compared against
thresholds increasing as 2*sqrt(1/<sparse level>).

Accuracy of the line width reconstruction was
assessed by comparison of the corresponding val-
ues of the cross-peaks matched by all frequencies
in the peak lists obtained for the reconstructed and
reference spectra. The match frequency tolerances
were 0.02 and 0.24 ppm for the proton and carbon
dimensions, respectively.

Results and discussion

Applicability of the MDD for processing of multi-
dimensional spectra is determined by its perfor-
mance in reproducing all above-noise spectral
features without introducing signal distortions and
false peaks that could hamper the spectra inter-
pretation. In this study we compare the complete
reference spectrum and a number of 4D spectral
reconstructions, which were obtained using the
3DD applied to several sparse data sets. This
comparison addresses the following questions: (i)
are all of the signal intensities correctly reproduced
in the full dynamic range, and are there false peaks
that significantly exceed the level of the baseline
noise; (ii) how does the reconstruction quality de-
pend on the sparse level; (iii) is there a variation in
the quality of reconstruction from one region of
the spectrum to another, e.g. due to different signal
density or presence of spectral artefacts; (iv) how
sensitive are the results to the settings of the MDD
parameters, i.e. the number of components and the
k-value?

4D reconstruction results

Accuracy of NOE intensity reconstruction
The most important aspect of quality of spectra
obtained from sparsed data is accuracy of recon-
struction of NOE peaks. We applied a commonly
used procedure that is to detect peaks in both ref-
erence and reconstruction spectra using a peak-
picking procedure, match them and to compare the
peak parameters obtained. However, as usage of
any particular peak-picking program makes a
quality estimation to be dependent on and specific

for that program, the analysis was complemented
by a more direct measure of reconstruction quality.
Namely, we perform data-point to data-point
comparison of spectral intensities between the
reconstructed and reference spectra for all
230686720 points in the region from )0.5 to
4.5 ppm (in x4) of the 4D spectra. The correlation
factor R=0.997 was calculated for the range of
amplitudes starting from just about the noise level
(2.2rrec) till highest diagonal peaks (1300rrec) in
either reference or reconstructed spectrum. The
subset of points with relatively low intensities in the
range 2.2–110rrec correspond to NOE cross-peaks.
The correlation factor R for this range is 0.984.

Correspondence of intensities for all data
points in the two data sets indicates the correctness
of reconstruction for all peak parameters: intensi-
ties, line-shapes and peak positions. In the fol-
lowing this is further verified by comparing
parameters of the cross-peaks identified in
the representative region of the reference and
reconstruction spectra. Figure 2 presents the
reconstruction–reference correlation plot between
the NOE peak intensities for 30% sparse data. A
dot significantly above the diagonal line would
indicate a false peak, i.e. having significantly
weaker intensity in the reference spectrum at po-
sition of the peak in the reconstruction. The dis-
tance between a dot and the diagonal reflects
accuracy of the intensity reconstruction. Figure 2
and Table 2 illustrate a great advantage of the
MDD method that almost no or very small num-
ber of weak false signals are generated in the
reconstructed spectrum for all used sparse levels.

Equally important question is how many peaks
that are found in the reference spectrum are
missing in the reconstruction. Out of total 219
cross-peaks found in the representative region 10
correlations were missing already for the sparse
level 100%, i.e. for the MDD reconstruction
obtained using the complete data set. These peaks
were strongly attenuated in the reconstruction
together with seven corresponding weak diagonal
signals. These diagonals were the weakest of all,
with intensities in the reference spectrum below 63
(the level is five times below the average diagonal
intensity), and apparently correspond to the sig-
nals from minor conformations, small fraction of
degraded protein or impurities in the sample.
Although these peaks can be recovered when an
analysis of minor signals is necessary by using
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more components for the region (data not shown),
we decided to exclude them from the further con-
sideration. Question regarding selection of a
number of components is considered below.

As sparse level gets lower, the measurement
time decreases, noise in the reconstructions
becomes higher and the weakest peaks may
disappear in the noise. As it is shown in Table 2
the small percentages of missing peaks in the
reconstructions correspond very well to the
losses anticipated due to the shortening of
the measurement time. Thus, four peaks (1.9% of
209) are missing for 30% sparse while the same
number of peaks are not found in the reference
spectrum if the sqrt(1/0.3)=1.82 times higher
threshold is used for the peak-picking. Note also
that 1–2% values are on the order of the errors in
the peak-picking procedure.

Values of NOE peak intensities or integrals
carry primary information about interproton dis-
tances in protein structure. It is thus important
that NOE intensities are well reproduced in full
range of peak amplitudes. Correlation coefficients
were calculated between intensities of the NOE
peaks in the reference spectrum and intensities at

the corresponding positions in the 30% sparse
reconstruction. Out of total 209 peaks in the
representative region of the reference spectrum
131 peaks with intensities Ipk in the range 3–10
were grouped as weak; 72 peaks (10<Ipk<100)
were grouped as medium; 6 peaks (Ipk >100) were
strong. For the groups of weak, medium and
strong peaks the correlation coefficients are 0.83,
0.9965, and 0.9997, respectively. Considering that
the peak amplitudes are normalized to the noise
level in the reference spectrum while the noise in
the 30% reconstruction is 1.82 times larger, the
correlation is good even for very weak peaks.

Accuracy of the peak line widths is another
important aspect to be considered when judging
quality of the reconstructed spectrum. Average
relative errors in the line width of 0.1(1Hind, x1),
0.1(13C, x2), 0.1(

13C, x3), and 0.15(1H, x4) were
calculated for the representative region (see
Materials and methods). These error values clo-
sely correspond to the digital resolution in the
spectral dimensions and are almost independent
of the peak amplitudes. Furthermore, noise level
intensities in the difference spectrum (Figure 5)
indirectly indicate good correspondence both for
the peak intensities and line widths. A typical
example of a nearly empty plane from the
difference spectrum is shown in Figure 3a.
Figure 3c illustrate that the cross-peak line
shapes are reproduced in the wide range of

Table 2. The quality of the MDD reconstruction for the rep-

resentative region (0.4–1.1 ppm in x4) at different sparse levels

quantified as percentage of missing and false cross-peaks

Sparse level Percentagea of missing and false peaksb

Missing

observed

Missing

expectedc
False

(>5rref)

False

(>3rref)

1.00 0.0 0.0 0 1.9

0.70 1.9 1.4 0 1.9

0.50 4.3 1.4 0 2.4

0.30 1.9 1.9 0 1.0

0.20 3.8 3.3 0 4.3

0.15 9.6 10.5 0 10.0

aThe values are normalized to 209 – the total number of cross-
peaks detected for the same region in reference spectrum (see
text).
bSee Materials and methods for the criteria for attributing peaks
to different groups.
cEstimate of number of peaks lost due to shorter measurement
time as described in Materials and methods.

Figure 2. Accuracy of the peak intensities in the 30% sparse
reconstruction. The intensities are correlated at the cross-peak
positions in the representative region of the reference and
reconstructed spectra. The intensities are measured in units of
standard deviation of noise in the reference spectrum, rref.
Inset: magnification of the intensity range from 1 to 10.5. The
cross-peaks were obtained by the peak-picking in the recon-
structed spectrum (see Materials and methods for the procedure
parameters).
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sparse levels. Finally, it is worth noting that since
the MDD procedure makes no assumptions
about the line-shapes, it is very unlikely to result
in biased line widths.

Noise in the reconstruction and the sparse level
To analyse the effect of missing data on the MDD
results, a series of 3DD runs were made for the
representative region (0.4–1.1 ppm) with varying
sparse level (0.15, 0.20, 0.30, 0.50, 0.70 and 1.00).
In these calculations Nc was 50 and k was 0.01.

To illustrate the effect of different sparse ratios,
a strip of 2D plane in the reconstructed spectrum
with 0.64 ppm and 35.72 ppm in 1H (x4) and

13C
(x3) dimensions was extracted (Figure 3b). The
cross-sections of the strip at x2=50.77 ppm in the
plane for various fractions of sparse data were
taken and displayed in Figure 3c. The cross-
sections show that with the sparse level decreasing,
the baseline noise in the corresponding spectrum
gradually increased. Note that while very weak
peaks may disappear as they submerge into the
noise, the intensity and linewidth of the cross-peak
is preserved for all sparse ratios. The Figure 3a
shows the difference spectrum. The difference of 3
contours is visible for the strong diagonal signal.

The Figure 4 shows observed noise value rrec

in the reconstructed spectrum as a function of the
sparse level. When the sparse level decreases so
does the data measuring time. It is therefore not
surprising that the rrec is higher for low sparse
levels. Indeed, it is well known that for the regular
spectra the noise is proportional to the inverse of
square root of the total measurement time. As a

benchmark a dashed line in Figure 4 was calcu-
lated according to such relationship. This repre-
sents an anticipated noise increase in the reference
spectrum recorded in shorter time, e.g. with fewer
transients. The dependences for the measured rrec

and anticipated noise on measurement time show
similar trend and largely overlap. This allows
reducing total time of the experiment in the so
called sample limiting situation without sacrificing
resolution. In addition sensitivity per unit time is
conserved. Thus, total measurement time of a
sparse 4D experiment is defined only by desired

Figure 3. An example of a 2D strip from the 30% sparse 4D spectrum (b), the difference spectrum (a), and 1D profiles with a cross-
peak for the reference spectrum and the reconstructions for various sparse levels 0.15–1.00 (c). The strip in a, b is at x4 = 0.64 ppm
and x3= 35.72 ppm, extracted from 0.47 to 1.1 ppm along the x1 and had full size in x2 dimension. The vertical line at x2=50.77 ppm
indicates the location of the x1 cross-sections shown in c. To show noise the size of the 1D cross sections is full, unlike that of the strip.
Data for different sparse levels, as indicated by number on the right, are shown with a constant vertical offset. The first contour (in a, b)
was at three standard deviations of noise in the reference spectrum (3rref), while contour multiplication factor was 1.3.

Figure 4. Noise as a function of sparse level or fraction of total
measurement time: (thick line, closed circles) average noise in
the reconstruction spectra rrec; (thin dash line) noise extrapo-
lated from the reference spectrum. The noise extrapolation was
performed using inverse square root dependence on the
measurement time, which is proportional to the sparse level.
The values are given in units of standard deviation of noise in
the reference spectrum rref. Note that the noise estimates are
conservative, since only planes containing the diagonal peaks
were used for calculating rrec while the empty denoised planes
were ignored (see text).
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sensitivity rather than by necessity to sample many
data points in order to achieve target resolution.
Small differences between the curves in Figure 4
can be easily rationalized on the qualitative level.
For the high sparse levels (right side of the plot)
noise in the reconstructed spectrum is somewhat
lower. Here, the bias in the sampling density en-
sures that only data points with the lowest signal
are missing. Omission of these points hardly re-
duces the quality of the reconstruction. As the
sparse level goes down the gain provided by the
matched acquisition levels off while losses intro-
duced by the MDD increase since the number of
measured data points approaches the number of
adjustable parameters of the MDD model. This
causes elevated noise values on the left side of the
plot. In other words, slightly lower noise values for
sparse levels 30–70% can be attributed to the effect
of sensitivity optimized matched acquisition. This
effect is much more significant when acquisition is
longer than transverse relaxation time. The
acquisition times in our spectrum were short
(16 ms for 1H and 6 ms for 13C) in comparison
with exponential decay times (50 and 10 ms,
respectively) used for generation of the sampling
matrix G in Equation 1. Therefore the sampling
density in the time domain did not differ too much
and the sampling effect on S/N was expected to be
small.

As it follows from the results of simulations
presented here, a reasonable compromise for the
sparse level for the 4D NOESY’s is in the range
0.25–0.4. This is in line with the value used in our
previous practical presentation of the MDD
(Tugarinov et al., 2005).

Reconstruction of the 10 regions of the spectrum
For each of the ten regions (see Table 1), a data set
with sparse level of 30% was prepared as input for
the 3DD calculations. The number of components
was determined as described in Materials and
methods and shown as the second column of the
Table 1. The third column in Table 1 shows nor-
malized standard deviation in the difference spec-
trum rdif. These values for the first nine regions
()0.5 to 3.6 ppm) fall in a narrow range between
1.08 and 1.21, which implies similar accuracy of
the reconstructions for these regions. Relatively
high value of 1.63 was obtained for the leftmost
region of the spectrum (3.4–4.5 ppm). The ele-
vated value of rdif in this case is due to destructive

influence of not fully suppressed water ridges in
this region.

Variation of the MDD parameters

The Tikhonov regularization factor k
Tikhonov regularization improves the convergence
of the MDD minimization (Ibraghimov, 2002) and
quality of the reconstruction (Orekhov et al.,
2003). When applied to a complete data set, result
of the decomposition is not very sensitive to the
value of k. However, for a large fraction of missing
data, usage of regularization becomes necessary
for improving the outcome of the decomposition.
Up to certain k-value the regularization can be
thought as a mild additional constrain, which
minimizes energy of the output components cal-
culated throughout whole spectrum including
missing points. A reasonable k-value allows
avoiding unjustifiably high amplitudes for the
missing data points, which would result in addi-
tional noise in the reconstruction. On the other
hand a too big value might cause distortions in the
solution. Thus, both too low and too high k-values
can result in a large variance in the difference
spectrum. This is illustrated by the results obtained
for the representative 4D data region for a set of k-
values (1.0, 0.1, 0.01, 0.001, 10)5). Figure 5a shows
a plot of the rdif values as a function of k. A
shallow minimum, which spawns almost two or-
ders of magnitude, is located near 0.01–0.1; it is in
line with the optimal values previously reported
for different 3D and 4D data sets (Orekhov et al.,
2003; Tugarinov et al., 2005). Therefore, it once
again confirms that the regularization factor k
does not represent a critical parameter for the
MDD calculations and one can safely use the
default value, e.g. k=0.01.

The number of components
Figure 5b shows rdif values for the representative
region as a function of the number of components
Nc. The plot in Figure 5b shows an almost flat
curve with a minimum at 50, which matches the
value predicted for this region (Table 1, strip 0.4–
1.1 ppm) by the procedure described in the
Materials and methods section. This shows that
overall reconstruction works well for the wide
range of Nc values. Nonetheless, Nc values much
smaller than the optimum should be avoided.
It was shown earlier (Gutmanas et al., 2002) that
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when choosing values that are clearly too small,
the weakest signals can be lost, or signals with high
overlap may be merged into a single component.
On the other limit, when Nc is too large, the
somewhat higher values of rdif are caused by
over-parameterization of the model of expression
(1). In both cases the consequences of using
improper number of components remain localized
and small. Overall, the MDD procedure appears
to be tolerant to both overestimation and under-
estimation of Nc. The calculation with Nc=90,
approximately twice overestimate of the optimal
number, gives mostly the same result, except for
slight noise increase. More specifically, the toler-
ance of the MDD to overestimation of Nc is
related to the degree of the redundancy of the
data, which is defined as the ratio of the number of
experimental measurements to the number of
model parameters fitted in the MDD. The latter
number corresponds to the number of elements in
all shapes of all selected components. Clearly, to
ensure an unambiguous solution in the minimiza-
tion of Equation 1, the redundancy of the data
must be significantly larger than one. In other
words the number of adjustable parameters must
be smaller than the number of measurements. The
consideration sets an upper limit on the number of
components to select. For the region of the refer-
ence spectrum used here, the number of experi-
mental measurements is the number of points in all
dimensions 100 � 36 � 36 � 63=8164800. This
number becomes 2449440 for the sparse level of
0.3. For the 3DD and 4DD calculations applied to
the same sparse data set, the number of parameters

fitted inside the models is significantly different. In
4DD (t1,t2,t3, x4) calculation the number of model
parameters is Nc� (100+36+36+63 ) 3)=
Nc � 232 and the corresponding data redundancy
can be calculated as 2449440/(Nc � 232) = 10558/
Nc. In the 3DD ([t1,t2],t3,x4) the number of model
parameters Nc � (36*100+36+63 ) 2)=Nc �
3697 is larger, since the first and second dimen-
sions are merged into one long dimension, as de-
scribed in the theoretical part. The redundancy of
the data is 2449440/(Nc � 3697)=662/Nc. For
example, the representative region with Nc=50 the
3DD (4DD) has redundancy of 13.2 (200). Thus,
to achieve the same level of redundancy, 4DD
allows approximately 16 times larger number of
components compared to 3DD. It is for this
reason 4DD calculation is more tolerant to over-
estimation in Nc and can be used for a robust
spectral component estimation. Note, however,
that the actual local redundancy levels can differ
from the average values estimated above for the
entire region.

Conclusion

In this paper the MDD methodology was applied
to processing of the exponentially sampled high-
resolution 4D HCCH-correlation NOESY spec-
trum of a 106-residue protein produced in the
pipeline of structural genomics. The results of the
systematic analysis demonstrate the robustness of
the MDD procedure and its applicability to
reconstructing of non-uniformly sampled spectra
with sparse levels from 15 to 100%. Throughout
this range the resolution and the sensitivity per
unit of measurement time are preserved in the
reconstructed spectrum. In the example using
30% data we demonstrate that 4D NOE spectral
intensities are correctly reproduced in the large
dynamic range, as well as cross-peak intensities.
Together with accurate cross-peak line widths
and increased resolution delivered by the sparse
acquisition these intensities should translate into
a set of correct NOE constraints to be used for
accurate spatial structure calculation. It was
demonstrated that the method does not produce
false peaks and the loss of peaks in the recon-
structed planes relative to the reference spectrum
corresponds to the anticipated increase in the
noise level due to shorter measurement time of

Figure 5. Average variance rdif in the reference-reconstruction
difference spectra as a function of the MDD parameters: k (a)
and Nc (b). The average variance values shown as open circles
connected by a line are normalized to rref. The arrow on the (a)
is directed towards point at log(k)=)5, rdif=3.72, which is
outside the plot. The vertical scale and limits are the same for
the two graphs. The calculations were performed with sparse
level of 0.3 for the region 0.4–1.1 ppm. The fixed parameters
were: Nc=50 (a), k=0.01 (b).
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the sparse spectrum. While giving prospects for
better resolution and a significantly simplified
peak assignment, the method does not sacrifice
sensitivity. This makes it attractive not only in
the field of high throughput structural proteomics
but also for all types of molecular systems ame-
nable for NMR structural studies. The benefits
are especially appreciated in application to large
proteins (Tugarinov et al., 2005). As such the
MDD in combination with sparse sampling
complements a toolbox of fast techniques that so
far were demonstrated on spectra other than
NOESY, e.g. triple-resonance experiments for
signal assignment as reviewed for example in
(Freeman and Kupče, 2003) (Hoch and Stern,
1996, 2001).
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